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1. STRUCTURED ABSTRACT 

Purpose: With increasing use of electronic medical records, a large investment is made in a resource still 
vastly underused. In mental health, extracting information from free text can create precious data sources 
to inform existing research and lead to new insights and treatments. 
Scope: The long-term goal is processing free text in EHR with a focus on Autism Spectrum Disorders 
(ASD) because prevalence is increasing but not well understood. The project brings a data-driven 
approach for analysis of large datasets and facilitate review of individual EHR. 
Methods: The methods include analysis of EHR free text, gold standard creation, and machine learning 
and natural language processing (NLP) for automated annotation of diagnostic patterns and labeling EHR. 
A database of 6000 records was leveraged to design algorithms and demonstrate usefulness of the models 
for a 10 year period. 
Results: Rule-based algorithms showed higher precision and recall than deep learning machine algorithms 
for criteria extraction. Case labeling was high with a variety of algorithm combinations. Application of 
the algorithms was demonstrated in a case study showing changes over a 10-year period in diagnostic 
criteria documented for individual children and prototype interface. 
Key Words: ASD, EHR, Natural Language Processing, NLP, machine learning, deep learning 

2. PURPOSE 

This project addresses an existing and aggravating problem and underused opportunity in healthcare. A 
treasure of information is available in electronic medical and health records (EHR) but it is not used and 
not taken into account.  The purpose of this project is to address current shortcomings in extracting 
existing data from EHR free text and leveraging this data for new insights. Autism Spectrum Disorders 
(ASD) serves as an excellent demonstration area because of the unexplained increase in prevalence.  With 
new research focusing on neural, genetic, or environmental causes for understanding ASD and developing 
treatments, much new data is generated. 
Our purpose is to address the lack of tools to leverage existing data, i.e., for large-scale use of the detailed 
ASD patient information from the EHRs and leverage the opportunity brought by increasing use of EHRs 
for a variety of patients. The EHRs represent a large investment and often result in a precious resource for 
improving service as well as research, understanding, treatments and cures. While it is an immense 
opportunity, the information is still vastly underused. The portion of the EHR ignored most is the free text 
because it requires advanced natural language processing (NLP) to transform the unstructured information 
into a structured form for use at a large scale and for integration with other data. The project comprises a 
self-contained health IT research project focused on a design of NLP algorithms for extracting ASD 
specific criteria automatically from EHR as well as assigning case labels. The research of interest is the 
design of a health IT that comprises algorithms and their combination in models for future use. 
The purpose is achieved through the design of NLP algorithms to create human-interpretable models that 
automatically annotate free text in electronic records and match to criteria in the Diagnostic and Statistical 
Manual of Mental Disorders (DSM) for ASD as well as case labeling using machine learning. We include 
a demonstration of the feasibility and usefulness of our models. Currently, autism surveillance is a 
manual, costly, and slow process that provides basic information about autism cases to the CDC and 
surveillance investigators. The algorithms created can provide more efficient (time & cost) surveillance 
techniques for tracking ASD across the country. Furthermore, the text processing tools go beyond 
discovery of single entities, such as genes or proteins, and provide comprehensive matching to more 
complex patterns, such as the DSM criteria. Finally, we show new research opportunities through 
secondary analysis of data. 



  
  

     
 

  
    

  

 
    

    
   

  
   

   
 

    
  

  
     

 
  

 
 

  
    

  
  

   
  

 
 

 
  

   
  
     

         
        

  
     

    
      

        
   

       
 

3. SCOPE 
3.1 Background 
This project addresses two broad changes in mental health and medicine. One change is the increasing 
prevalence of Autism Spectrum Disorders (ASD) diagnoses and the resulting increase in research, 
treatments and interventions but lack of large-scale (phenotype) data use to understand, prevent, and cure. 
The second change is the increasing use and availability of electronic health records (EHR) containing an 
abundance of text but little further use of the information contained in them for new research. 
EHR bring the opportunity of identifying causes of ASD through large-scale data use. But this requires 
health IT to extract this information. Much current work has been interesting but narrowly focused and 
limited to structured data. For example, counts of the presence of conditions in populations (1) or 
evaluations of highly specific decision support systems (DSS), e.g., a template with ADHD diagnostic 
information (2). Increasingly, the free text from these EHR is being utilized. This text contains rich 
information that is often complementary, more detailed and explanatory to the data. However, there has 
been little focus on ASD with one exception, a research project where ICD-9 codes were combined with 
concepts to classify case status (3). In contrast, other work has focused on analyzing language created by 
people on the spectrum (4, 5). In other fields, NLP for EHR has already been shown to be valuable, for 
example NLP of EHR for safety surveillance for postoperative complications (6), extraction of adverse 
drug effects from psychiatric records (7),  identification of patients needing colonoscopy (8), or the 
creation of data such as veterans’ employment information (9). 

3.2 Context 
We work with EHR in mental health where free text is of enormous importance due to the complexity of 
diagnosis and treatment. We believe that the opportunity for leveraging the text is great in mental health, 
and especially ASD, since diagnosis and treatments are highly individualized, resulting in rich records 
containing free text detailing approaches and results. 
Children with ASD demonstrate drastically variable behaviors that qualify for the same DSM criteria. We 
work on automated extraction of the Diagnostic and Statistical Manual of Mental Disorders (10) (DSM) 
criteria for ASD since the DSM specifies the combination of criteria needed to assign ASD case status. 
Analysis of the results may lead to new insights in the condition, change over time or regions. It may also 
facilitate early detection and treatment which have been demonstrated to improve outcomes (11) through 
automated detection in EHR. To the best of our knowledge, no current works leverage DSM diagnostic 
criteria in the free text in the records. With the widespread use of the DSM, this is a missed opportunity. 
Table 1 shows example diagnostic criteria for DSM-IV. During the first part of our project, DSM-IV 
criteria were used in our EHR. Later in the project, the diagnostic criteria were updated to DSM-5 which 
is the current standard. 

Table 1: Sample rules (and numbering) from DSM-IV-TR to diagnose Autistic Disorder 
Rule Description 

DSM-IV 
A. A total of six or more items from (1), (2), and (3), with at least two from (1), and one each from (2) and (3): 

(1) Qualitative impairment in social interaction, as manifested by at least two of the following: 
A1a (a) Marked impairment in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial 

expression, body postures, and gestures to regulate social interaction 
A1b (b) Failure to develop peer relationships appropriate to developmental level 

… 
(2) Qualitative impairments in communication as manifested by at least one of the following: 

A2a (a) Delay in, or total lack of,  the development of spoken language (not accompanied by an attempt to 
compensate through alternative modes of communication such as gesture or mime) 

A2b (b) In individuals with adequate speech, marked impairment in the ability to initiate or sustain a 
conversation with others 



   
 

 

   

 
   

 
 

 
  

  
  

  
   

  

  
 

    
 

 
   

 
  

   
  

 

  
  

  
 

    
   

   
   

 

  
  

 
 

  

  

Table 2 shows example criteria as they are found in EHR free text. The difficulty and diversity of 
examples is similar for DSM-IV and DSM-5 criteria. 

Table 2: Example DSM-5 Criterion Labels and EHR Examples 
DSM-5 
Criteria Example EHR Text Snippets 

A1 
He does not yet initiate a turn-taking game or social routine 
He would not answer when his name was called 

B1 
presented with lots of immediate and delayed echolalia interspersed with some spontaneous 
language 
Clicks camera repeatedly 

3.3 Settings and Participants 
The Centers for Disease Control and Prevention (CDC) established the Autism and Developmental 
Disabilities Monitoring Network (ADDM) to monitor ASD in 4- and 8-year-olds. We work with the data 
collected as part of ADDM which include autism evaluation text files from special education and medical 
records coupled with a clinician review and coding of statements meeting DSM 5 criteria as well as ASD 
diagnosis (12).  

3.4 Incidence and Prevalence 
ASD is of particular interest because of the increasing number of people affected and the lack of 
breakthroughs in treatments. In the second half of the 20th century, ASD prevalence was estimated at 5 
cases per 10,000 people. Since the 1990s, prevalence estimates were increasing(13) and ranged from 4.5-
9.9 cases per 1,000 children in 2000, 1 in 110 children in 2006(14), 1 in 68(15) in 2010, and 1 in 54 
children in the US in 2020 (16). 
The reasons are uncertain, but factors such as increased public awareness, changing diagnostic criteria 
and substitution of ASD eligibility for other special education eligibilities have been proposed, as well 
possible true increasing prevalence of ASD (14, 15). Regardless, data on long-term trends, symptoms and 
interventions are important for planning interventions and educational and health services.  Furthermore, 
without biological lab test, diagnosing requires observation of complex behavior descriptions usually 
recorded in text. 

4. METHODS 

4.1 Study Design 
This project comprises the development of three types of algorithms: 1) natural language processing 
algorithms to recognize and label DSM diagnostic criteria in EHR free text (both rule-based and machine 
learning algorithms are used for this), 2) machine learning algorithms to label an entire records as ASD or 
not, and 3) a prototype interface to highlight DSM criteria automatically in text. 
Components 1 and 2 have been extensively tested using standard evaluation metrics. The usefulness of 
Component 1 was demonstrated with a study of 10 years of EHR. Component 3 was additional work (out 
of scope) and testing has been limited to use-cases with local clinicians. 

4.2 Data Sources Created 
A. EHR 
We have access to EHR on 6357 children collected as part of the ADDM. Records from educational 
sources for each child are matched to their records from any of four clinical sources. The combined 
records are loaded into the tracking system and at each data source abstractors review them to identify 
those with any of the 32 social behavioral triggers listed in the ARCHE Abstraction Manual (ARCHE is 
provided by CDC for their ADDM Network surveillance projects) consistent with ASD. Such identified 



 
    

  
 

  

   
       

  
  

  
   

  
 

   
  

  
 

 
 

 

  
 

 
    

 
  

 
 

 
 

 
  

 
 

 
  

records are abstracted: demographic and services information is collected with verbatim descriptions of 
behaviors exhibited by the child that are consistent with or contradict a diagnosis of ASD. 

B. EHR Gold Standard 
Diagnostic Criteria Extraction 
Abstracted information for each child is printed as a report with no identifiers. This report is evaluated by 
clinical reviewers who apply standardized criteria to determine case status. The annotations by the 
clinicians include the DSM-IV-TR criteria in all years and will add the DSM-V criteria from this year on. 
As of now, we have access to 1986 annotated records for which all DSM criteria have been entered in 
electronic format. However, these reports were printed and so we needed to create an electronic gold 
standard with all information combined. For a subset of the EHR (about 200), there are also printed 
versions on which clinicians have underlined the text segments that are an expression of the 12 DSM-IV 
(Diagnostic and Statistical Manual on Mental Health Disorders) criteria that were used to diagnose  ASD. 
Using an annotation tool (WebAnno) to load the electronic version of these records, we manually created 
an electronic version. This is a time consuming process. In some cases, the annotation on the printed 
record was unclear (e.g., missing label or label difficult to read). For these annotations, we consulted with 
the clinician on our team to ensure we add the correct label. Once records were annotated and stored, they 
could be reused in every design and test round. 
These data are used by the NLP parser for criteria extraction. 
Case Labels 
For each record, we have the ASD label (ASD or not). 
These data are used by the classification algorithms. 

C. Lexicons 
Identifying ASD diagnostic criteria in text requires recognizing important trigger words, i.e., words 
describing typical behaviors of ASD. For our first version of our parser, we capture these words in 
lexicons. Approximately 90 lexicons with about 20 terms each were manually created. Table 3 provides 
an overview with examples of lexicons and the terms they contain. We used a lexical lookup for each 
noun found in the text and annotate it with the lexicon’s label. These labels form part of the patterns used 
to describe DSM criteria. Multiple patterns are needed to capture the different free text expressions for 
each DSM criterion. 
The lexicons are optimized for patterns for each DSM criterion, so the same terms may appear in multiple 
lexicons. However, a few lexicons are shared by all patterns and used for different DSM criteria. 
Currently, there are eleven lexicons commonly shared by all patterns, e.g., the lexicons containing body 
parts. In addition, the patterns for the A1, A2 and A3 criteria share respectively seven, three and two 
lexicons. For example, DSM rules A1a, A1b, A1c and A1d all require identification of “impairment in 
social interaction,” and the relevant terms for this trigger are combined in the lexicon “A1_interact.”  In 
addition to these shared patterns, each DSM pattern requires additional individual lexicons optimized for 
that pattern. 



 
 

 
 

 
  

     
 

      
     
     

    
 

      
     

   
 

     
      
     
     
      
      
      
      
     

  
 

 
 

 

  
 

 
  

  
  

   
   

 
    
    
    
    
    
    
    

  
   

 

Table 3. Lexicon Overview 
Pattern use of Lexicons Nr of Example Lexicon Example Terms 
Lexicons terms 

All Rules 11 345 Body_parts arm, eye, hair, teeth, toe, tongue, finger, fingers, 
nose 

Group A1 7 105 A1_interact interact, interactions, communicate, relationship 
Group A2 3 72 A2_positive severe, significant, pervasive, marked 
Group A3 2 72 A3_object door, toys, vacuum, blocks, book, television, lights 

A1a 4 42 A1a_nonVerbalBehavior eye contact, eye to eye gaze, gestures, nonverbal 
cues 

A1b 2 11 A1b_consistent good, consistent, appropriately, satisfactory 
A1c 5 61 A1c_affect excitement, feelings, satisfaction, concerns 

A1d 12 159 A1d_engage recognize, recognizes, reacts, respond, regard 
attend 

A2a 4 117 A2a_gained gained, used, had, obtained, said, spoke 
A2b 8 240 A2b_recepLang direction, instructions, questions, conversations 
A2c 7 145 A2c_idiosyncratic breathy, echolalic, jargon, neologism, reduced 
A2d 7 83 A2d_actions actions, routines, play, signs, gestures, movements 
A3a 7 106 A3a_obsess obsessed, obsessive, perseverates, preoccupation 
A3b 7 119 A3b_nonFunctionalPlay stack, stacks, lines, lined, nonfunctional, arrange 
A3c 3 67 A3c_abnormal grind, grinds, rocks, twirls, spin, tap, clap, flap 
A3d 3 43 A3d_sensitive defensiveness, sensitivity, hypersensitivities 
Total 92 1,787 

D. Word Embeddings: 
While lexicons are a good starting point, they require the manual addition of all variants of a word, e.g., 
synonyms, plural. To automate this process, we started working with word embeddings. 
Word embeddings are a continuous dense representation of words in a corpus. Instead of representing a 
word with one value in a large sparse matrix the size of an entire vocabulary, each word is represented by 
a dense vector of a size pre-determined by the user (usually 50 to 300). Word embeddings are based on 
the distributional hypothesis, that is, similar words appear in similar contexts. The underlying algorithm 
“learns” meanings of words based on their occurrence in a large, unlabeled corpus and word embedding 
vectors can encode semantic meaning, allowing users to programmatically determine semantic similarity 
of words based on cosine similarity of the vectors. 
We created a vocabulary to be used by the machine learning algorithms. Using existing software libraries 
(i.e., Word2Vec) we created word embeddings using our EHR. We evaluated different versions of word 
embeddings and compared their quality. 
Table 4 shows an overview of the word embeddings created using different datasets. The quality of these 
was compared and the EHR based word embeddings found to be of the highest quality. 

Table 4. Descriptive statistics of training corpora and embedding 
Embedding Tokens Documents Words Vectorized 

EHR-5M 5,004,165 2,082 11,570 
EHR-ALL 10,745,674 4,482 15,663 

PubMed-5M 5,007,328 23,249 20,393 
PubMed-ALL 6,703,109 31,171 23,481 
PsychInfo-5M 5,051,296 27,049 19,251 

PsychInfo-ALL 13,316,489 69,601 30,964 

4.3 Interventions 
A. Diagnostic Criteria Extraction: Parser Development 
Rule-based Version (Initial Version) 
The parser combines open source libraries, e.g., the General Architecture on Text Engineer (GATE) (17, 
18) for standard pre-processing of text: tokenizer, sentence splitter, and the Stanford tagger for the part-



   
 

  
    

      
   

   
  

  
 

  
 

  

  

 
   

   
 

   
 

 
  

 

    

    

  
    

 
  

 
   

 

 

 

of-speech Tagger (19). After processing all free text, terms are annotated using gazetteer lookup (i.e., the 
lexicons listed above). 
Using 43 annotated records from the ADDSP containing 4732 sentences, we developed 12 sets of patterns 
(total 104 patterns) for the 12 DSM criteria (see Table 1). 
Figure 1 shows one example patter as a finite state automata (FSA) for DSM criterion A2c. Each label on 
an arc (e.g., A2c_speech) represents the lexicon of terms (terms indicating ‘speak’ as relevant to rule 
A2c). For example, Pattern 1 would match to the text “[often]A2c_frequent [speaks]word token [with]word token 

[reduced]A2c_idiosyncratic [volume]A2c_speech.” 
All patterns are specified in a Java Annotation Pattern Engine (JAPE) file. A JAPE file is a file where 
patterns to be annotated in text can be described using GATE-specific formatting. GATE ‘reads’ the 
JAPE files and applies them to text. When a pattern in the JAPE is recognized in the text, the text 
matching the pattern is annotated with the labels specified in the JAPE file. 
NOTE: The evaluation is in the results section. 

Figure 1. Visualization of two patterns (of seven existing) for DSM criteria A2c 

Machine Learning Version (Newer Version) 
We evaluated the newest deep learning algorithms for our parser. Deep learning delivers good performance 
in classification tasks, but is suboptimal with small and unbalanced datasets, which are common in many 
domains. 

We created a machine learning version using LSTM. Since some criteria were represented by fewer than 
one hundred examples, we needed creative methods to optimize the algorithms. To address this limitation, 
we use conventional machine learning, i.e., support vector machines (SVM) to tune deep learning hyper-
parameters. 

NOTE: The evaluation is in the results section. 

B. ASD Case Assignment 

This part on our preliminary work using machine learning algorithms to assign case labels. 

We compare the value of different types of features, machine learning algorithms, and ensemble 
approaches. Each type of feature captures different information about the data, while different algorithms 
learn different characteristics of the features. An ensemble over features sets combines different types of 
information, and an ensemble over algorithms combines different ways to analyze information. We found 
that ensembles over algorithms lead to more accurate and balanced classification than individual 
classifiers, while ensembles over different features can effectively combine different types of data and 
give classification that is more accurate compared to the classic combination (concatenation) of the same 
set of features. 

Algorithms 

We used support vector machines (SVM), Decision Trees (DT), and Neural Networks (NN). We chose 



  
 

  
 

 

   

 
  

 

 

 
  

 
 

 

  
  

    
 

 
  

 
  

 
  

  

 

  
 

 
  

 

   
 

   

SVM because it tends to yield good performance and is fast to train. We used a SVM with the traditional 
linear kernel. We chose DT because they provide interpretable results. We used an optimized version of 
the CART Algorithm (Classification and Regression Trees) with GINI information gain as the splitting 
criterion. NN are black-box models and not intended to provide interpretable decisions even though 
current research exists aimed at  deducing rules and automata from trained NN (20, 21). NN provide 
excellent performance but need large datasets and training is time consuming. For all three algorithms, we 
used scikit-learn’s implementation of these algorithms in Python (22). 

We also pilot-tested a deep learning algorithm: convolutional neural network (CNN). However, our 
datasets is small and results were poor (70.0% accuracy). Therefore, we focused on classic ML algorithms 
in this study. 

Ensemble Methods 

Ensemble methods combine results from multiple classifiers, which allow errors to even out and perform 
better than a single classifier. For transparency and interpretability, we are taking a straightforward 
approach to combine classifiers: taking a majority vote, which has also been shown to work well in 
practice (23). The key to ensembles’ superior performance is the combination of diverse information from 
its base classifiers. 

In this work, we compare two approaches for creating ensembles with diversity: combining different 
features and combining different algorithms. 

Feature ensembles. Every feature set we generated in this work captures a different aspect of information 
in the document. Therefore, classifiers trained on different feature sets are learning from different types of 
information and an ensemble can combine them. Two of our feature sets combine annotation-based 
features and bag-of-word (BOW) features by concatenating them in the into a single feature vector. In an 
ensemble, we take a vote over classifiers that use these features sets separately to determine if an 
ensemble is a more effective way to combine features than simply concatenating the feature vectors. 

Algorithm ensembles. One set of ensemble classifiers vote over the output from three different algorithms 
applied to the same dataset. This scheme leverages the fact that each machine learning algorithm learns 
something different from the data, which together, should produce more insightful predictions. 

4.4 Measures 

For our evaluation, we customary calculate four metrics. Precision provides an indication of how correct 
the annotations made by the parser are, in other words, if the parse annotates sentences with a DSM label 
what percentage of these labels are correct. Recall (also referred to as sensitivity) provides an indication 
of how many of the annotations the parser is able to capture, in other words, of all the sentences that 
received a DSM label by the human annotators what percentage does the parser also label correctly.  We 
also calculate the F-measure which is the harmonic mean of recall and precision. The scores for the F-
measure indicate how balanced an approach is: when recall and precision are similarly high, the F-
measure will be high, however if one of them is low the F-measure will reflect this with a low F-score. 
Finally, we also calculate specificity, which indicates how well our parser can ignore sentences that are 
not an expression of DSM criteria. 
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5. Results and Demonstrations 
5.1 Phenotypical Behavior Labeling with DSM-IV Criteria: Rule-based Parser 
Our testbed consists of the 50 new EHR records containing 6634 sentences. These are records that were 
annotated by the clinical experts and the text and annotation stored by us in electronic format. Of the 
entire set, 1357 sentences (20.45%) contained annotations with some sentences contained more than one 
annotation. Table 5 shows the number of examples of phenotypical behaviors for each criterion found in 
the EHR. 

Table 5. Gold Standard Overview 
DSM Diagnostic Criteria Gold Standard 

DSM Rule Theme Total in Average per 
Records Record 

A1a Nonverbal behaviors 126 2.52 
A1b Peer relationships 91 1.82 
A1c Seeking to share 37 0.74 
A1d Emotional reciprocity 165 3.3 
A2a Spoken language 406 8.12 
A2b Initiate or sustain conversation 333 6.66 
A2c Stereotyped or idiosyncratic language 127 2.54 
A2d Social imitative play 66 1.32 
A3a Restricted patterns of interest 62 1.24 
A3b Adherence to routines 135 2.7 
A3c Stereotyped motor mannerisms 68 1.36 
A3d Preoccupation with parts of objects 28 0.56 
Total 1644 32.88 

Table 6 and Table 7 show the results of our parser and its ability to label these behaviors with the correct 
DSM label. At the annotation level, we achieved 74% precision and 42% recall on average. We took the 
micro average, which combines the true and false positive counts across all rules.  For individual criteria, 
precision was higher (75% and higher) for most with the exception of two (Criterion A1d and A3d). 
Recall was also particularly low for these two criteria, along with A1b and A1c. The best precision and 
recall were achieved for criterion A1a, with more than half of the annotations (57% recall) identified and 
with very few errors (96% precision). 

Table 6. Annotation-level Results (P= Precision, R= Recall, F= F-Measure) 
Annotation Level 

(Based on 6634 sentences) 
Total in GS Evaluation 
(#sentences) 

P R F 
Annotations 1644 
A1a 126 0.96 0.57 0.72 
A1b 91 0.63 0.27 0.38 
A1c 37 0.78 0.19 0.30 
A1d 165 0.62 0.27 0.37 
A2a 406 0.69 0.44 0.53 
A2b 333 0.79 0.44 0.57 
A2c 127 0.68 0.36 0.47 
A2d 66 0.79 0.56 0.65 
A3a 62 0.83 0.40 0.54 
A3b 135 0.75 0.51 0.61 
A3c 68 0.82 0.41 0.55 
A3d 28 0.53 0.29 0.37 
(Micro)  Average 0.74 0.42 0.53 



    
 
 

  
  

     
 

 
 

  
   

 
 

  
  

   
 

 

      
       

      
      
      
      
      
      
      
      
      
      
      
      

      
      

 
 

 
  

  

   
   

    
          

  
 
 

 

 
   

            
  

The results are very similar for the sentence level evaluation. Both metrics are slightly higher; with 
average precision at 76% and average recall at 43%. For the A1a criterion, more than half of the required 
sentences were identified (recall 59%) with minimal errors (97% precision).  Using a sentence as a unit of 
analysis, it is also possible to compute specificity, or true negative rate (which was not possible with 
annotation level evaluation since we would have to predefine in advance how many possible annotations 
– i.e., sentence segments – there are in the EHR). However, specificity is not a very interesting metric for 
this task. We achieve nearly perfect specificity because only 0.5% to 5% of all sentences contain true 
annotations for each individual rule, and our system reports very few false positives (high precision).  
We conducted a final, more lenient approach by evaluating whether the system can identify the relevant 
sentences for DSM criteria, regardless of which criterion they represent. In this case, we found that our 
parser achieves 82% precision and 46% recall in identifying the 1,357 sentences that were annotated for 
autism-like behavior. 

Table 7: Sentence-level Results (P= Precision, R= Recall, F= F-Measure, S = Specificity) 
Sentence Level 

(Based on 6,634 sentences) 
Total in GS Evaluation 
(#sentences) 

P R F S 
Sentences 1,357 
A1a 120 0.97 0.59 0.74 1.00 
A1b 90 0.68 0.30 0.42 1.00 
A1c 35 0.78 0.20 0.32 1.00 
A1d 158 0.63 0.28 0.39 1.00 
A2a 391 0.71 0.45 0.55 0.99 
A2b 329 0.83 0.47 0.6 1.00 
A2c 121 0.67 0.37 0.48 1.00 
A2d 65 0.83 0.58 0.68 1.00 
A3a 61 0.73 0.36 0.48 1.00 
A3b 123 0.74 0.52 0.61 1.00 
A3c 64 0.82 0.42 0.56 1.00 
A3d 28 0.53 0.29 0.37 1.00 
(Micro) average 1585 0.76 0.43 0.55 1.00 
All Rules 1357 0.82 0.46 0.59 0.97 

Summary: We created a rule-based parser to extract behaviors matching DSM-IV diagnostic criteria. The 
parser showed high precision: 76% average over all 12 criteria, ranging from 53% to 97% for individual 
criteria, and somewhat lower recall with 46% average over all 12 criteria, ranging from 43% to 59% for 
individual criteria (24). 

5.2 Phenotypical Behavior Labeling with DSM-5 Criteria:: Machine Learning-based parser 
We evaluated the newest deep learning algorithms for our parser. Deep learning delivers good performance 
in classification tasks, but is suboptimal with small and unbalanced datasets, which are common in many 
domains. To address this limitation, we use conventional machine learning, i.e., support vector machines 
(SVM) to tune deep learning hyper-parameters. 
We chose two classification approaches for the task. We use SVM, a reliable, classic machine learning 
algorithm frequently used with text data, and BI-LSTM, a state-of-the-art deep learning model that is 
usually applied to text. 

SVM 
We used scikit-learn’s implementation of the SVM in Python (22). Since the SVM naturally has a two-class 
formulation, we train an independent model to detect the presence of each diagnostic criteria. Our BOW 
features are the 5000 most frequent tokens from the training data. 



 
 

 
   

             
    

     
     

   
  

  
 

  
  

  
 

   
  

  
 

  
   

   

  

   
    

  
 

         
 

  
 

  
  

   
 

  
 

  

BI-LSTM 
We used a BI-LSTM with tunable pre-trained embeddings. The input into the BI-LSTM are 200-
dimensional pre-trained word embeddings from 4480 ASD EHR from 2000-2010, the complete set of 
unlabeled EHR text from one ADDM surveillance site during that time. During training, we randomly 
removed half the cases without any positive labels to adjust for the small proportion of positive cases. Each 
LSTM Layer has an internal layer size of 350 and was trained with a dropout ratio of 0.5. We use a sigmoid 
output layer with one unit for each label. The model is set to train for up to 50 epochs with early stopping. 
In practice, most models in our experiment trained for less than 25 epochs. In this study, we used Keras 
(2.1.5) (25) to implement the BI-LSTM and Deeplearning4J’s word2vec implementation (26) to train the 
word embeddings. 

Tuning Process 
On a personal computer, it takes a few minutes to train a SVM on our dataset, compared to approximately 
two hours needed to train a BI-LSTM. Therefore, we can conduct fairly thorough parameter tuning for the 
SVM through-grid search. We validated the parameters on 20% of our training examples, and retrained the 
final model using the entire dataset based on the best set of parameters. 
It is less feasible to exhaustively tune the BI-LSTM through grid-search. We selected the baseline 
architecture based on a manual search, guided by our previous experience working with text data. 
The training parameter from the SVM that can be informative for training the BI-LSTM is class weights. 
Since we have a highly imbalanced dataset, we can increase the weights of the minority class to increase 
their impact on the model. In addition to a plain BI-LSTM, we also tested a version of an LSTM in which 
each class is weighted by the best class weights found by the SVM. 
In summary, we compare the following three systems: 

• SVMs: a set of highly-tuned SVMs, one for each class 

• BI-LSTM-1: a regular BI-LSTM. 

• BI-LSTM-W: a BI-LSTM trained with class weights 1 from the tuned SVM 
We evaluated our approach for DSM-5 annotations (Table 8). A bidirectional LSTM (BI-LSTM) could not 
learn the labels for the seven scarcest classes, but saw an increase in performance after training with optimal 
weights learned from tuning SVMs. With these customized class weights, the F1 scores for rare classes rose 
from 0 to values ranging from 18% to 57%. Overall, the BI-LSTM with SVM customized class weights 
achieved a micro-average of 47.1% for F1 across all classes, an improvement over the regular BI-LSTM’s 
45.9%. The main contribution lies in avoiding null performance for rare classes. 
Using these optimal values for class weights from tuning the SVM, we were able to improve the overall 
performance and avoid null values in seven classes that originally showed 0 value for F1 (see above for 
definition) but then improved to 57.1% (27). However, re-weighting also resulted in small negative 
impacts on classes with many examples, which showed the need for multiple models and ensembles. 
Second, we used the rule-based parser to create training data (a type of weak supervision). We were able 
to improve the recall from 60.5% to 69.8% and precision from 51.5% to 52.3% by training on the 
extended data (28). 



 

  
  

  
  

   
    

   
  
   
  
   
   

 
  
  
   

 
 

 
   

  
   

  

    
          

          
          
          
          
          
          
          

          
          

          
          
          
          
          
          
          
          
          
          
          

          
          
          

          

          

Table 8. Classification Results for DSM-5 Diagnostic Criteria Labeling. 

Label SVMs BI-LSTM-1 BI-LSTM-W 
- P R F1 P R F1 P R F1 

A1 0.606 0.407 0.487 0.497 0.499 0.498 0.450 0.437 0.443 
A2 0.577 0.723 0.642 0.599 0.621 0.610 0.450 0.813 0.579 
A3 0.454 0.460 0.457 0.695 0.327 0.444 0.522 0.475 0.497 
B1 0.597 0.456 0.517 0.446 0.495 0.469 0.462 0.528 0.492 
B2 0.733 0.525 0.612 0.648 0.488 0.556 0.525 0.593 0.557 
B3 0.509 0.329 0.400 0.500 0.012 0.023 0.274 0.271 0.272 
B4 0.506 0.517 0.512 0.605 0.586 0.595 0.497 0.695 0.579 
AF1a 0.418 0.583 0.487 0.560 0.292 0.384 0.520 0.542 0.531 
AF1b 1.000 0.235 0.381 0.000 0.000 0.000 0.435 0.588 0.500 
AF2 0.618 0.366 0.460 0.806 0.314 0.452 0.667 0.349 0.458 
AF3 0.167 0.143 0.154 0.000 0.000 0.000 0.143 0.571 0.229 
AF4 0.532 0.652 0.586 0.765 0.146 0.245 0.516 0.562 0.538 
AF5 0.343 0.427 0.381 0.352 0.173 0.232 0.310 0.246 0.274 
AF6 0.467 0.343 0.396 0.398 0.353 0.374 0.275 0.588 0.375 
AF7 0.567 0.454 0.504 0.470 0.551 0.508 0.509 0.514 0.512 
AF8a 0.188 0.286 0.226 0.000 0.000 0.000 0.200 0.286 0.235 
AF8b 0.200 0.125 0.154 0.000 0.000 0.000 0.333 0.125 0.182 
AF10 0.209 0.409 0.277 0.000 0.000 0.000 0.333 0.409 0.367 
AF11a 0.013 0.250 0.025 0.000 0.000 0.000 0.500 0.125 0.200 
AF11b 0.050 0.150 0.075 0.000 0.000 0.000 0.194 0.300 0.235 
AF12 0.707 0.933 0.805 0.813 0.520 0.634 0.725 0.880 0.795 
AF13a 0.491 0.274 0.351 0.416 0.416 0.416 0.315 0.568 0.405 
AF13b 0.539 0.318 0.400 0.000 0.000 0.000 0.769 0.455 0.571 
AF14 0.282 0.600 0.384 0.000 0.000 0.000 0.311 0.350 0.329 
Micro-
average 0.481 0.453 0.467 0.526 0.407 0.459 0.426 0.531 0.472 

5.3 EHR Case Labeling with Machine Learning 
A. Individual Models 
Different input features were compared (Table 9) ranging from bag-of-words (BOW), labels 
automatically generated with the parser (ANNOT), and labels using a manually created lexicon (MLEX). 
For BOW, 2,000 or 10,000 terms were chosen based on Term Frequency-Inverse Document Frequency 
(TF-IDF) or Pointwise Mutual Information (PMI) scores. The features used are as follows: 

• BOW: TF-IDF BOW of terms that appears in more than 2 documents 
• BOW 2K-F: TF-IDF BOW of the 2,000 terms with the highest cross-document frequency 
• BOW 10K-F: TF-IDF BOW of the 10,000 terms with the highest cross-document frequency 
• BOW 2K-P: TF-IDF BOW of the 2,000 terms with the highest absolute PMI 
• BOW 10K-P: TF-IDF BOW of the 10,000 terms with the highest absolute PMI 
• ANNOT: 72 metrics (12 criteria, 6 metrics each) based on lexical overlap with sample 

annotations for the diagnostic criteria 
• ANNOT BOW2K-F: 72 annotation-based metrics and terms in BOW 2K-F 
• MLEX: 92 manually developed lexicons 
• MLEX BOW2K-F: 92 manually developed lexicons and terms BOW 2K-F 

The human interpretable DT algorithm yielded lower classification accuracy than SVM and NN for all 
except two feature sets: BOW 2K-P and ANNOT. Using only MLEX yield the worst performance for the 
DT, with only 69.5% accuracy, seven percentage points behind the best performing SVM system. 
Comparing the different sets of features, 2,000 most frequent terms, which can be derived without any 
knowledge of the domain or data, is the most reliable predictor of case status using both DT  (78.0% 
accuracy) and NN (82.5% accuracy). SVM saw its best performance at 80.9% accuracy, using every 



  
 

 
   

  
 

     

            

             

             

             

             

             

              

 
 

            

             

 
            

  
    

   
 

   
 

 
  

 
  

 
   

    

  

  

        

 
          
          
          

   
          
          
          

    
          

   
          

terms that occurred more than twice in training. Using PMI-based features resulted in DT models that had 
much higher precision than recall; the same also occurred in MLEX with SVM and MLEX BOW2K-F 
with DT. 

Table 9. Classification Results – Classic Approach EHR Case Labeling 

Feature Set 
Support Vector Machine Decision Tree Neural Network 

A P R F1 A P R F1 A Pc R F1 

BOW 0.809 0.821 0.803 0.812 0.779 0.777 0.798 0.787 0.793 0.792 0.810 0.801 

BOW 2K-F 0.782 0.785 0.794 0.789 0.780 0.779 0.798 0.788 0.825 0.848 0.804 0.825 

BOW 10K-F 0.806 0.818 0.801 0.809 0.780 0.779 0.798 0.788 0.812 0.834 0.793 0.813 

BOW 2K-P 0.731 0.745 0.723 0.734 0.775 0.824 0.715 0.766 0.773 0.762 0.814 0.787 

BOW 10K-P 0.782 0.799 0.771 0.785 0.776 0.853 0.682 0.758 0.788 0.797 0.789 0.793 

ANNOT 0.743 0.759 0.734 0.746 0.713 0.719 0.727 0.723 0.688 0.692 0.707 0.699 

ANNOT 
BOW2K-F 

0.783 0.784 0.796 0.790 0.778 0.796 0.763 0.779 0.825 0.848 0.803 0.825 

MLEX 0.765 0.826 0.687 0.750 0.695 0.717 0.672 0.694 0.758 0.806 0.806 0.747 

MLEX BOW2K-
F 

0.777 0.777 0.793 0.785 0.773 0.828 0.704 0.761 0.823 0.845 0.802 0.823 

B. Feature Ensembles 
Table 10 summarizes the results of majority-vote ensembles based on multiple feature sets and a single 
base classifier, and compares them against the best metric from any single feature set using the same 
algorithm. Since the SVM saw its best performance with the large BOW feature set, we added two 
additional ensemble models (Models 7 and 8) that uses the full BOW as the vocabulary component in the 
ensemble. The best ensemble model was voting over three NN models that combined BOW 2K-F, 
MLEX, and MLEX BOW 2KF. This model gave predictive accuracy of 83.3%, precision of 86.1%, recall 
of 80.6%, and overall F1 of 83.2%. This is an improvement of 0.8% in accuracy and 0.7% in F1 
compared the best performance of a single feature set. Every ensemble was able to outperform any single 
component feature set except for two instances (precision in Model 2 and recall in Model 8). 

Table 10. Classification Results – Algorithm Ensemble 

# Base 
Classifier 

Voting Ensemble Model Best Metric from Single Feature Set 

A P R F1 A P Rec F1 

Feature sets: BOW 2k-F, ANNOT, ANNOT BOW 2K-F 
1 SVM 0.790 0.793 0.800 0.797 0.783 0.785 0.796 0.790 
2 DT 0.786 0.779 0.816 0.797 0.780 0.796 0.798 0.788 
3 NN 0.829 0.852 0.808 0.829 0.825 0.848 0.804 0.825 

Feature Sets:  BOW 2k-F, MLEX, MLEX BOW 2K-F 
4 SVM 0.793 0.800 0.795 0.798 0.782 0.826 0.794 0.789 
5 DT 0.783 0.792 0.785 0.788 0.780 0.828 0.798 0.788 
6 NN 0.833 0.861 0.806 0.832 0.825 0.848 0.806 0.825 

Feature Sets:  BOW, ANNOT, ANNOT BOW 2K-F 
7 SVM 0.817 0.826 0.816 0.821 0.809 0.821 0.803 0.812 

Feature Sets:  BOW, MLEX, MLEX BOW 2K-F 
8 SVM 0.819 0.840 0.799 0.819 0.809 0.826 0.803 0.812 



  
 

 
  

    
 

 
  

 
 

   
 

  

        

          

          

          

          

          

           

          

          

          

  
 

  
   

   
 

 

 
   

   
 

Table 11 summarizes the results of a majority-vote ensemble using three classification algorithms on each 
feature set, and compares them against the best metric from any single algorithm. Three features sets 
(BOW 10K-F, ANNOT BOW2K-F, and MLEX BOW2K-F) tied for highest classification accuracy with 
82.7%, higher than accuracy from any single algorithm; the BOW 10K-F feature set gained 1.5% in 
accuracy, the greatest margin in this work. The ensemble model improved accuracy for every feature set 
with three exceptions. The best feature set using a single algorithm, BOW 2K-F, had the same accuracy 
with the ensemble and the NN. The two small features sets, ANNOT and MLEX, saw better performance 
with a single algorithm. Except for ANNOT and MLEX, the ensemble models produced more balanced 
predictions and higher F1, while a particular algorithm may slightly favor precision or recall. 

Table 11. Classification Results: Feature Ensemble 

# Feature Set 
Voting Ensemble Model Best Metric from Single Algorithm 

Acc Prec Rec F1 Acc Prec Rec F1 

1 BOW 0.820 0.829 0.817 0.823 0.809 0.821 0.810 0.812 

2 BOW 2K-F 0.825 0.839 0.813 0.827 0.825 0.848 0.804 0.825 

3 BOW 10 K-F 0.827 0.844 0.815 0.829 0.812 0.834 0.801 0.813 

4 BOW 2K-P 0.785 0.797 0.780 0.788 0.775 0.824 0.814 0.787 

5 BOW 10K-P 0.809 0.848 0.765 0.804 0.788 0.853 0.789 0.793 

6 ANNOT 0.723 0.731 0.730 0.730 0.743 0.759 0.734 0.746 

7 ANNOT BOW2K-F 0.827 0.851 0.804 0.827 0.825 0.848 0.803 0.825 

8 MLEX 0.763 0.816 0.697 0.752 0.765 0.826 0.806 0.750 

9 MLEX BOW2K-F 0.827 0.859 0.792 0.825 0.823 0.845 0.802 0.823 

5.4 Application: Symptom Prevalence Study 
We applied the rule-based parser to demonstrate changes in diagnostic criteria presence over a period of 
10 years of ADDM surveillance (24). 
We analyzed our 4480 records not been used during the development of the parser and contain a 
minimum of text (40 characters was used as the cutoff). Figure 2 shows the descriptive statistics. Records 
were collected every two years starting in 2000 and ending (for our analysis) in 2010. In the first three 
collection periods, fewer records were collected, however, in each of the last 3 collection periods, around 
1,000 records were collected. The prevalence of autism in the records is lower the first year (39%). This is 
associated with the relative inexperience of the data collection team who abstracted more records than 
necessary to avoid missing cases.  In subsequent years data collection was more efficiently focused on 
records that included information consistent with an autism diagnosis and the proportion children’s 
records included was between 50 and 60% with the one exception of study year 2006 (41.8%). 



 
   

 
 

 
   
     

  
  

  
   

   
 

    
  

  
    

  

      

Figure 2: Descriptive Information: Number of records, ASD Prevalence, and Average Text Length 
We then applied our rule-based parser to all records and show an overview of phenotypical behaviors and 
their match to the individual diagnostics criteria as expressed in the records. 
The records contained on average 5.76 different DSM criteria. We performed our analysis separately for 
records of children with and without ASD. All counts are normalized by record length: the number of 
criteria found is divided by number of words in the document. 
A1 DSM criteria: impairments in social interaction (Figure 3). For children with ASD (Panel A) the A1d 
criterion (social/emotional reciprocity) is the most common criterion found in the records. The least 
commonly found was the A1c criterion (shared interest).   In the last 4 years, the average number of 
A1a,b, and d criteria described in the records increased, but no similar increase in the average number 
records containing A1c was observed. 
We performed the same analysis for children without ASD (Panel B). The results show, as expected, that 
there are fewer criteria recorded in their records. The patterns are also different. The number of criteria 
recorded shows a decreasing trend over the last 4 years of record. 

Figure 3: Average A1 Criteria Per Record 

A2 DSM criteria: impairments in communication (Figure 4). The changes for A2 criteria are very small 
over the years. The most commonly found criterion is A2a (spoken language) and the least commonly 
found criteria are A2c (stereotyped/repetitive/idiosyncratic language) and A2d (Imaginative play). For the 
records of children with ASD, there is a slight increase in 2002 and 2004, but few changes over the 
collection years. The total number of these A2 criteria is higher than for A1 criteria (see axis). 



  
   

 
  

  
 

 

   

   
   

  
 

  
    

     
 

Interesting, there is little difference between the number of criteria found in ASD versus not ASD. 
Figure 4: Average A2 Criteria Per Record 

A3 DSM criteria:  restricted repetitive and stereotyped behavior patterns (Figure 5). For the records 
labeled with ASD, the most commonly found criterion is A3b (Adherence to routines) with the other three 
criteria being less common and comparable to each other. 
Overall, fewer criteria are found in the Non-ASD labeled records. 

Figure 5: Average A3 Criteria Per Record 

5.4 Application: Interface Development (Additional work, not in original aims) 
We developed a prototype interface that shows criteria extracted for an individual record. The use of such 
an interface is review of EHR by clinicians for faster surveillance review or easier clinical decision 
making. 
The following figures show highlighting of individual criteria for DSM-IV and DSM-5 (although the 
underlying DSM-5 algorithms are tentative) (Figure 6), highlighting of multiple criteria matching the 
same sentences (Figure 7), and a summary of criteria found in a record (Figure 8). 



 
  

 
 

 

  
 

 
 

  

 
  

 
    

  
  

   
 
      

   
    

 
 

Figure 6: DSM-IV Criteria Highlighted 
in Text 

Figure 7: DSM-5 Multiple Criteria 
Matching One Phrase 

Figure 8: Summary of Counts for EHR 

5.5 Conclusions 
The project focused on developing algorithms to algorithmically detect and label phenotypical expression 
of ASD behavior in EHR with the correct DSM diagnostic criterion. Precision was high but recall was 
somewhat lower for recognizing diagnostic criteria for the rule-based approach. Machine learning 
approaches had somewhat lower performance but significantly less development time. With further 
tuning and increasing the dataset, these machine learning algorithms can be improved. 
In addition, machine learning algorithms were further developed to label an entire EHR with the ASD 
label or not. Accuracy was high for the best models and can be further improved by adding more different 
data fields (current work was focused on free text only) and a larger dataset. 
Two demonstrations showed the value of the work. First, we processed 10-years’ worth of EHR and 
showed changes over time in phenotypical behaviors expressed and matched to DSM criteria by children 
with and without ASD as recorded in the EHR. Second, we developed a prototype interface showing the 



 
 

   
    

 
   

  
  

  
  

   
  

  

  
    

 
     

 
   

   
  

     
 

   
  

 
   

 

   

  

     
   

   
  

  

    
 

 
  

  

potential of these algorithms for clinicians in diagnosing or reviewing records as well as the potential for 
time- and cost-effective surveillance. 

5.6 Significance and Implications 
The significance of our work lies in the algorithms created as well as in the demonstration of their 
potential for surveillance efforts, new research, and earlier diagnosing of children. 
Application of our algorithm, with or without human oversight, may lead to nationwide surveillance of all 
relevant EHR for ASD. This would provide a major cost saving as well as much broader base for tracking 
ASD. 
The algorithms can also be applied to extracting ASD phenotypical expressions at a large scale, which has 
not yet been accomplished by others. This type of data can be added to existing datasets for clinical 
review and data mining. This may contribute to precision medicine approaches for ASD. 
Finally, our algorithms can be integrated in a user-friendly interface or accessed by API which can 
facilitate diagnosing of children by clinicians with limited expertise. This would improve early diagnosing 
and treatment of children with ASD leading to better outcomes. 

5.7 Limitations 
Our work has a first limitation related to the data used for the project: ADDM EHR and mostly DSM-IV. 
Our project, as proposed, uses EHR collected for the ADDM network which contains rich free text and 
which are annotated and diagnosed for DSM-IV. Further work should expand to the use of any type of 
EHR and switching to DSM-5. 
There is a second limitation, but also opportunity, due to the data fields used so far. For this work we 
intentionally only used the free text in the EHR. By using additional structured fields, it is expected that 
all measures will improve because more information is provided to the algorithms. 
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Conference Proceedings (Posters): 

• Y. Gu, G. Leroy, M. Surdeanu, and S. Pettygrove, (Poster) "Case Status Classification for Mental 
Health with Electronic Health Records".  Workshop on Information Technologies and Systems 
(WITS), Santa Clara, CA, December 16-18, 2018. 

Presentations: 

• Y. Gu and G. Leroy.  (Poster). “Large-scale Text Analysis of Electronic Health Records for Autism 
Spectrum Disorder", Women in Data Science Tucson Conference (WiDS-Tucson), online, April 17, 
2020. 

• Y. Gu, G. Leroy. "Automated Training Data Discovery and Labelling for Machine Learning in a Low 
Resource Domain", INFORMS General Annual Meeting (INFORMS), Seattle, WA, Oct 22-25, 2019. 

• Y. Gu and G. Leroy, "Classification with Feature and Algorithm Machine Learning Ensembles for 
Autism Spectrum Disorders", Conference on Health IT and Analytics (CHITA), Washington DC, 
November 14-15, 2019. 

• Y. Gu and G. Leroy, "A Classification Artifact to Support Mental Health Surveillance: A Comparison 
of Feature and Classifier Ensembles", Workshop on Information Technology and Systems (WITS), 
Santa Clara, December 2018. 

Work in Progress: 

• Data-driven Estimations of the Predictions of Deep Learning for Text in Low-Resource Domain. 
Targeting: Management Information Systems Quarterly (MISQ),  2021 submission. 

• A Systematic Evaluation of Systems and Data Sources for Automatic Training Label Creation for 
Machine Learning. Targeting: ACM Transaction on Management Information Systems (ACM TMIS) 
or Journal of the American Medical Informatics Associations (JAMIA), Spring/Summer 2021 
submission. 

• Case Status Prediction for Autism Spectrum Disorder based on Electronic Health Records: Features, 
Ensembles, and Population Biases. Targeting: ACM Transaction on Management Information 
Systems (ACM TMIS), Spring/Summer 2021 submission. 
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